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Abstract

A fertilized egg is initially transcriptionally silent and relies on maternally 
provided factors to initiate development. For embryonic development 
to proceed, the oocyte-inherited cytoplasm and the nuclear chromatin 
need to be reprogrammed to create a permissive environment for zygotic 
genome activation (ZGA). During this maternal-to-zygotic transition 
(MZT), which is conserved in metazoans, transient totipotency is 
induced and zygotic transcription is initiated to form the blueprint for 
future development. Recent technological advances have enhanced 
our understanding of MZT regulation, revealing common themes across 
species and leading to new fundamental insights about transcription, 
mRNA decay and translation.
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in genomics methods, such as metabolic RNA labelling sequenc-
ing approaches30, are helping to disentangle maternal and zygotic 
RNA dynamics. Low-input genomics methods are especially critical 
given the limited number of cells in early embryos undergoing MZT 
and have been essential in mapping early mouse embryo DNA and 
RNA modifications31–35 and genome architecture36–38. Furthermore, 
ribosome profiling methods have furthered our understanding of 
MZT post-transcriptional regulation39–44 and identified key regula-
tors of ZGA45–48. Taken together, these approaches are revealing how 
gene expression dynamics and subcellular localization are precisely 
regulated, offering a deeper understanding of the MZT.

In this Review, we discuss how maternal factors and nuclear chro-
matin are remodelled to create a state of transient totipotency. We 
emphasize common themes during MZT, highlighting work from fruit 
flies (Drosophila melanogaster), zebrafish (Danio rerio), frogs (Xenopus 
tropicalis and Xenopus laevis) and mice (Mus musculus). As the role 
of trans-acting factors in regulating maternal transcript clearance 
has been reviewed recently3,4, we emphasize the equally important 
role of translation-dependent clearance mechanisms. Whereas early 
MZT studies focused on dissecting the timing of ZGA onset and other 
developmental events (Box 1), here we instead highlight recent work 
that has leveraged the unique transition from transcriptional silence 
to robust transcription to yield fundamental mechanistic insights 
into transcriptional activation that have implications beyond ZGA16.

Reprogramming the cytoplasm
In the absence of transcription, the fertilized egg initially relies solely 
on maternal proteins and RNAs deposited into the oocyte. The earliest 
cytoplasmic reprogramming events in the embryo therefore entail 
post-translational regulation of maternally provided proteins and 
activation of maternal mRNA translation. Subsequently, as develop-
ment proceeds, the embryo further reprogrammes its cytoplasm via 
post-transcriptional and post-translational mechanisms that enable 
the clearance of the maternally provided factors to prepare the embryo 
for future development.

Control of maternal factors and mRNA translation
Transcripts deposited in the oocyte are exceptionally stable owing to 
factors such as specialized RNA binding proteins (RBPs) that protect 
mRNAs from decay; binding of translational repressor proteins, such 
as cytoplasmic polyadenylation element binding protein (CPEB) which 
binds to cytoplasmic polyadenylation element (CPE) motifs in the 3′ 
untranslated regions (UTRs) (see the section ‘Translation-dependent 
mechanisms of mRNA clearance’ for how translation levels affect mRNA 
stability); and a unique regulatory regime that enables the stability of 
short, deadenylated poly(A) tails49–55. Although poly(A) deadenylation 
typically drives RNA decay in somatic cells by triggering 5′ decapping 
and degradation56, deadenylated mRNAs are uniquely stable in oocytes 

Introduction
The maternal-to-zygotic transition (MZT; also called the oocyte-to-
embryo transition) represents a complete reprogramming of the newly 
formed embryo through an overhaul of cytoplasmic transcripts and 
proteins and the reprogramming of the chromatin to enable zygotic 
genome activation (ZGA; also called embryonic genome activation) 
(Fig. 1a). These interconnected processes collectively reshape the 
oocyte gene expression programme into that of a totipotent embryo, 
which later differentiates into various cell types to form an organism 
(Box 1). Consequently, efforts to achieve a comprehensive molecular 
understanding of how MZT affects early developmental events and 
gene regulation are providing fundamental insights into the regulation 
of transcription, mRNA decay and translation, and have important 
implications for human fertility, development and disease.

Upon fertilization, the newly formed zygote inherits the cyto-
plasm of the oocyte and the nuclei from highly differentiated sperm 
and oocyte. Early embryonic development involves reprogramming 
these parental cells to a new embryonic state of transient totipotency. 
The capacity of the oocyte cytoplasm to reprogramme the nucleus is 
evident in somatic cell nuclear transfer (SCNT) reprogramming shown 
by Gurdon and colleagues1 and parallels the process of induced pluri-
potent stem cell generation2. The reprogramming of the embryo first 
occurs in the absence of zygotic transcription and is instead driven 
by maternally deposited proteins and the translation of maternally 
deposited mRNA transcripts3,4. Remodelling of translation is cen-
tral to this process5 as it regulates, through the ribosome, both the 
protein and mRNA contents of the developing embryo. Cytoplasmic 
reprogramming also entails the dramatic repression and clearance of 
maternal transcripts during the MZT, largely mediated by regulating 
poly(A) tail length. The nuclear reprogramming of the embryo begins 
immediately after fertilization, characterized by a remodelling of 
the epigenetic landscape to establish a naïve chromatin state6–8. This 
enables the onset of ZGA, which occurs at varying times across species 
but is reproducible within a species9–15 (Table 1 and Fig. 1b). Zygotic 
transcription begins with the activation of a small number of genes, 
followed by the transcription of thousands of genes16. Ultimately, the 
zygote assumes developmental control through initiating de novo 
transcription.

Technological advances have greatly enhanced our ability to inter-
rogate fundamental processes underlying the MZT. Techniques such as 
mass spectrometry and high-resolution structural analysis have pro-
vided new mechanistic insights into translational17 and transcriptional 
activation18–20. Recent microscopy advances have also been instrumen-
tal, including super-resolution single molecule imaging to interrogate 
transcription factor (TF) behaviour in reprogramming21,22; imaging 
methods with high temporal resolution to visualize transcription23–26 
and translation dynamics27,28; and expansion microscopy to investigate 
how chromatin organization influences transcription29. Advances 

Fig. 1 | An overview of the MZT. a, The maternal-to-zygotic transition (MZT) is a 
reprogramming of the embryonic cytoplasm and the nucleus. Upon fertilization 
of an oocyte by the sperm, early development is driven by maternally provided 
proteins, as well as by newly translated proteins from maternal transcripts. 
Maternal mRNAs are cleared by maternal factors (maternal decay (M-decay)) or 
zygotic factors (zygotic decay (Z-decay)). The reprogramming of the nucleus 
enables zygotic genome activation (ZGA), which results in zygotic transcripts 
that eventually change the composition of the cytoplasm to be zygotic. b, Timing 
of ZGA onset in fast-developing and slow-developing embryos is depicted in 

hours post fertilization and cleavage/nuclear cycle number. The first embryo 
of each pair denotes the timing of the first reproducible transcription events, 
whose detection often requires highly specialized or sensitive methods; 
the second embryo indicates the timing of the large-scale onset of zygotic 
transcription. These events have traditionally been called ‘minor’ and ‘major’ 
waves of ZGA, respectively. Recent studies in several species also suggest even 
earlier transcription events, although many of these may be spurious (Table 1). 
Note that the timings depicted for Xenopus ZGA are for Xenopus tropicalis; in 
Xenopus laevis, robust ZGA begins at cleavage cycle 12, at ~5 h post fertilization.
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and very early embryos57,58, which is important given their transcrip
tionally quiescent state and, thereby, their inability to replenish mRNAs 
(Fig. 2a). This stability is driven partially by a lower decapping activity 
in X. laevis59,60 and potentially by protection of the mRNA cap by the 
eIF4E1b cap binding protein in zebrafish49. Furthermore, the mRNA 
5-methylcytosine (m5c) modification is prevalent in maternal tran-
scripts across species and enhances RNA stability. Disrupting this 
m5c landscape impairs embryo development in D. melanogaster and 
zebrafish61,62, supporting the importance of enhanced mRNA stability 
in oocytes and early embryos.

Reprogramming of the maternally provided cytoplasm involves 
activation of translation of oocyte-provided mRNAs and occurs 
through several mechanisms, some of which begin even before fertiliza-
tion. For example, CPEB is phosphorylated upon resumption of oocyte 
meiosis, which switches its function from a translational repressor to 

a translational activator54,63 through the recruitment of specialized 
poly(A) polymerases that lengthen poly(A) tails43,64–67 (Fig. 2a). In early 
embryos, poly(A) tail length is strongly correlated with translational 
efficiency40,43,58,64. The cytoplasmic poly(A)-binding protein PABPC 
enhances translation44 and is present at limiting levels (Fig. 2a); thus, 
transcripts with the longest poly(A) tails are more likely to bind PABPC 
and undergo translation44. The exact timing of re-adenylation and 
translation is strongly influenced by the number and position of 3′ 
UTR CPEs and/or other motifs47,48,54,58,66,68–70. Re-adenylation is uni-
versally important for embryogenesis; blocking it, for example with 
the adenosine analogue cordycepin (3′-dA), halts early embryonic 
development67,71,72. In addition to poly(A) tail length changes, maternal 
transcripts undergo other remodelling events, including partial 3′ UTR 
degradation before re-adenylation72–74, which potentially increases 
translational efficiency74, and the addition of G residues in poly(A) 
tails, which increases transcript stability by preventing deadenylation 
by the CCR4–NOT complex72,75.

Regulation of maternally provided proteins also has a key role in 
cytoplasmic reprogramming and activating translation. As discussed 
above, post-translational modification of CPEB promotes translation 
through a switch in protein function. However, post-translational 
modifications can have a broader impact on translation and the protein 
landscape; for example, in D. melanogaster, PNG kinase-dependent 
phosphorylation of many maternally provided translational repres-
sors leads to their inactivation and degradation41,76,77. Lastly, ribosomal 
translational activity increases in early embryos through the acti-
vation of ‘dormant’ ribosomes17,78. In zebrafish and X. laevis oocytes 
and earliest-stage embryos, ribosomes exist primarily as ‘dormant’ 
monosomes because specialized proteins (Dap1b, eIF5a, eEF2 and 
Hapb4 in zebrafish) block critical ribosome sites (the polypeptide 
exit channel, the exit and peptidyl sites, the aminoacyl site and the 
mRNA-entry channel) (Fig. 2b). Release of these dormancy factors has 
been suggested to allow dormant ribosomes to become translationally 
active polysomes. Conservation of dormancy factors across species 
from D. melanogaster to mammals suggests that inactive ribosomes 
are a universal feature of early embryogenesis17. This limited ribosome 
availability creates a unique regulatory framework whereby transcripts 
compete for active ribosomes and limited PABPC (Fig. 2). The resulting 
low translation rates in early embryos may protect transcripts from 
translation-dependent decay, creating a reservoir of mRNAs that can 
be activated once translation ramps up. In the future, it would be inter-
esting to explore whether specific membraneless compartments in the 
oocyte safeguard these maternal mRNAs for later use in the embryo.

Clearance and remodelling of the maternal programme
The initiation of translation not only marks the start of embryonic 
development but also signals the beginning of the end for many 
maternally deposited mRNAs. Maternal transcript clearance involves 
translation-dependent and translation-independent mechanisms and 
can be driven by the maternal programme (maternal decay (M-decay)) 
or the zygotic programme (zygotic decay (Z-decay), which is dependent 
on ZGA)79 (Table 1 and Fig. 3a,b). Transcript susceptibility to M-decay 
or Z-decay may depend on mRNA function or temporal expression 
requirements for each gene. For example, transcripts regulated by the 
earlier M-decay include those needed for oogenesis or during early cell 
cycles pre ZGA but whose prolonged expression could be detrimental 
to development and gastrulation4,80. Many decay mechanisms converge 
on poly(A) tail shortening, often through recruitment of the CCR4–NOT 
deadenylase complex (Fig. 3c). As described above, the direct effect 

Box 1 | The developmental context 
of the MZT
 

Genome activation timing varies across species (Table 1 and Fig. 1b) 
and can be divided into fast-developing and slow-developing 
embryos403. Fast-developing (non-mammalian) embryos develop 
in externally laid eggs that initiate zygotic genome activation (ZGA) 
shortly after fertilization to ensure rapid development and reduce 
predation404. Early cleavage cycles are rapid and alternate between 
DNA S and M phases, omitting G phases403,405. In slow-developing 
embryos (mammals), ZGA (often called embryonic genome 
activation) occurs during preimplantation development403,406. Their 
slower cell cycles include G phases from the start403. In mammals, 
zygotic transcription begins later in absolute time compared 
with fast-developing species, with the first zygotic transcripts 
detected ~12 h post fertilization in mouse embryos13 (Fig. 1b). 
Next-generation sequencing enhances mRNA detection sensitivity. 
Recent studies in some species have detected zygotic transcripts 
earlier than the canonically appreciated zygotic transcription 
events30,399,400 (Table 1); however, these early transcripts may arise 
from promiscuous transcription events influenced by relaxed 
chromatin, yielding non-functional mRNAs166.

In early embryos, initial cell divisions occur without cell growth, 
with each division resulting in a higher nuclear-to-cytoplasmic 
volume ratio (N:C ratio)346,407. Embryos shift from increasing cell 
numbers to body axis elongation through gastrulation at the 
mid-blastula transition (MBT), where cell cycles lengthen owing 
to a prolonged S phase and the introduction of G phases, and 
in Drosophila melanogaster cellularization occurs232,344,401. 
In fast-developing species, the first zygotic transcription events 
precede the MBT, but large-scale ZGA coincides with MBT232,344,401. 
Therefore, MBT occurs during maternal-to-zygotic transition (MZT), 
but these terms describe two distinct transitions.

During MZT, cells gain unique molecular identities and positional 
information, preparing for the first cell movements and lineage 
commitments during germ-layer specification344,401,403. In species 
where primordial germ cells segregate early in development, their 
MZT dynamics differ from the rest of the embryo103,408–411. Failure 
of ZGA or MZT can result in gastrulation failure in many organisms 
and preimplantation failure in mammals185,344,406,412.
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of deadenylation in early embryos is translational repression40,43,47,58,64 
owing to limiting levels of PABPC44. Deadenylation ultimately results 
in destabilization and clearance of deadenylated transcripts, but only 
during later embryonic stages. The post-transcriptional regulation 
of many transcripts allows the embryo to integrate distinct signal-
ling pathways and cellular processes to coordinate embryogenesis. 
The embryo also reprogrammes the maternal proteome, an aspect 
of the MZT that has received less attention.

Translation-independent mechanisms of mRNA clearance. A large 
fraction of maternal mRNAs are destabilized by small RNAs, particularly 
microRNAs (miRNAs). For example, zebrafish miR-430 (ref. 81) and its 
Xenopus spp. homologue miR-427 (refs. 11,82) trigger Z-decay81,82 and 
attenuate zygotic transcript levels81,83. These miRNAs primarily target 3′ 
UTRs84 but can also target 5′ UTRs85–88 and coding sequences86,88. miRNAs 
bring Argonaute to the mRNA, which recruits TNRC6, a translational 
repressor and an adaptor for the CCR4–NOT deadenylation complex84 
(Fig. 3c). This complex triggers translational repression39,40 and mRNA 
deadenylation81. The unrelated miR-309 serves a similar function in 
D. melanogaster89, suggesting convergent evolution of miRNA-mediated 
maternal clearance. Importantly, these miRNAs are all found in multi-
copy clusters81,82,89 — the zebrafish miR-430 locus has >300 promoters 
and encodes 1,800 mature miRNAs29,90, and the X. tropicalis miR-427 locus 
has >170 miRNA repeats11 — that enable rapid accumulation of miRNAs  
and swift clearance of maternal transcripts during the MZT. miR-430 

is also zygotically expressed in other fish species91 and miR-430/427 
may have independently undergone expansion in multiple vertebrate 
species11,82,92. Although miRNAs help to ensure robust cytoplasmic 
reprogramming in fast-developing organisms (such as D. melanogaster, 
zebrafish and Xenopus spp.) (Box 1), miRNA processing factors are not 
required in mice for maternal clearance93, perhaps because their slower 
development does not necessitate such strong clearance dynamics. 
However, mammalian homologues of miR-430/427 (ref. 94) (miR-290–295 
in mouse and miR-371–373 in human, also miR-302) are expressed in 
early mouse embryos95 and mammalian stem cells96,97, can facilitate 
reprogramming in vitro and help to maintain pluripotency98,99. These 
observations highlight the parallels between cytoplasmic reprogram-
ming to support transient totipotency during MZT and somatic repro-
gramming. miRNA-mediated post-transcriptional regulation provides 
an elegant evolutionary strategy to regulate many transcripts through 
small changes in the 3′ UTR creating new target sequences in mRNAs: 
the speed and extent of regulation of transcripts containing the same 
target site could be controlled simultaneously, with different target sites 
modulating different cellular processes. Other small RNAs involved in 
maternal transcript clearance include endogenous short interfering 
RNAs (endo-siRNAs) in mouse93,100 and Caenorhabditis elegans101,102, and 
Piwi-interacting RNAs (piRNAs) in D. melanogaster103. Similar to miRNAs, 
these small RNAs function via the highly conserved Argonaute/Piwi 
protein family, making Argonaute proteins the universal player in small 
RNA pathways and maternal RNA clearance (Fig. 3b).

Table 1 | Species-specific regulation of the maternal-to-zygotic transition

Drosophila 
melanogaster (fly)

Danio rerio (zebrafish) Xenopus tropicalis and 
Xenopus laevis (frog)

Mus musculus (mouse) Homo sapiens 
(human)

Regulators of maternal clearance

Regulators of M-decay Smaug80, BRATa,113, 
Aubergine/piRNAs103, 
codon optimality135, 
AU-rich elementsb,c,114

TUT4/7 (ref. 129), m6Aa,104,105, 
codon optimality135,136, 
Upf1/ORF-mediated decay150, 
C-rich elementsb,110

TUT4/7 (ref. 129), 
EDEN-BP/Celf1 (ref. 111), 
AU-rich elements57,117 
codon optimality135

endo-siRNAs/AGO2 
(refs. 99,100), BTG4 
(refs. 121,122), ZFP36L2 
(ref. 118), PABPN1L123, codon 
optimality135

BTG4 (refs. 126,132)

Regulators of Z-decay miR-309 (ref. 89), 
BRATa,113, Pumilio113,114,395

miR-430 (ref. 81), m6Aa,104,105, 
Hnrnpa1b,109, AU-rich 
elementsb,110,116, Pumiliob,116

miR-427 (ref. 82) TUT4/7 (ref. 131), 
endo-siRNAs/AGO2 
(refs. 99,100), PABPN1 
(ref. 396), m6A 
(refs. 35,107,108)

TUT4/7 (ref. 132)

Regulators of ZGA

Maternally deposited 
transcription factors 
with demonstrated or 
suggested pioneering 
ability that regulate early 
zygotic gene expression

Zelda169, GAF179, 
CLAMP180,181

Nanog45, Pou5f3 
(refs. 45,172), Sox19b 
(refs. 45,172)

Foxh1 (ref. 177), 
Pou5f3 (ref. 176), Sox3 
(ref. 176), Vegt178,397, 
Otx1 (ref. 178)

OBOX184, NFY193, NR5A2 
(refs. 187,188,190)

TPRX48

Timing of ZGA

Stage when zygotic 
transcription is first 
observedd

Nuclear cycle 8 
(refs. 12,398) [nuclear 
cycle 6 (ref. 399)]

64-cell stage10 
[2-cell stage30]

8 cell (X. tropicalis)11 1 cell13 2–4 cells15 [1 cell400]

Embryo stage where 
robust ZGA is observed

Nuclear cycle 14 
(ref. 349)

1,000-cell stage401 Stage 8 (X. tropicalis: 
between cleavage 
cycles 8 and 9; 
X. laevis: cleavage 
cycle 12)11,344

2 cells13,14 4–8 cells402

BRAT, Brain tumour; endo-siRNA, endogenous short interfering RNA; m6A, N6-methyladenosine; M-decay, maternal decay; ORF, open reading frame; piRNA, Piwi-interacting RNA; Z-decay, 
zygotic decay; ZGA, zygotic genome activation. aSome regulators have been implicated in both M-decay and Z-decay and are therefore listed in both rows. bRegulators implicated in maternal 
transcript clearance and/or stability but without an established mechanism. cUnclear whether M-decay or Z-decay. dSpurious zygotic transcription, perhaps due to open chromatin, has been 
observed in some species. The timing of those observed events is denoted in square brackets.

http://www.nature.com/nrg


Nature Reviews Genetics

Review article

mRNA modifications also facilitate transcript clearance during 
the MZT (Fig. 3b). In zebrafish, N6-methyladenosine (m6A) marks about 
one-third of maternal transcripts and induces mRNA deadenylation 
and subsequent decay104,105. m6A co-regulates deadenylation alongside 
miR-430, demonstrating that multiple destabilizing programmes can 
act additively to clear maternal mRNAs. Recent innovations in low-input 
genomics methods have enabled profiling of m6A in mouse oocytes and 
embryos, revealing that m6A shapes the oocyte transcriptome106 by 
initially promoting stability in late-stage oocytes but later destabilizing 
transcripts in two-cell embryos35,107,108.

RBPs mediate target specificity and timing of transcript clearance by 
recognizing specific RNA motifs or structures109,110 (Table 1 and Fig. 3b). 
For example, in X. laevis, EDEN-BP/Celf1 binds the embryonic deadenyla-
tion element (EDEN) motif to induce deadenylation111. In D. melanogaster, 
several RBPs collaborate to regulate maternal transcripts. To drive 
M-decay, Smaug42,80,112 and Brain tumour (BRAT)113 collectively destabi-
lize thousands of mRNAs, with each protein targeting a non-overlapping 

set of transcripts. BRAT113 and Pumilio114 later regulate Z-decay113,114. 
There are several commonalities in RBP-mediated maternal clearance 
across species. Many RNA motifs and RBPs overlap across species, 
such as AU-rich elements (AREs) and/or ARE binding proteins57,110,114–118. 
Maternally provided RBPs are often activated post-transcriptionally 
or post-translationally; for example, dephosphorylation of X. laevis 
EDEN-BP/Celf triggers its activity119. Many RBPs, including D. mela-
nogaster RBPs112,120 and BTG4 (refs. 121,122) and PABPN1L (ref. 123) in 
mice, induce deadenylation by recruiting the CCR4–NOT deadenylase 
complex, which initially reduces protein output before eventually trig-
gering RNA decay40,43,47 (Fig. 3c). Some RBPs also recruit translational 
repressors124,125. The developmental importance of these RBPs is under-
scored by the observation that homozygous mutations of human BTG4 
are linked to infertility, and human zygotes derived from BTG4-deficient 
oocytes do not undergo cleavage divisions126.

In addition to motifs that serve as RBP binding sites or miRNA 
target sites, other RNA motifs strongly affect transcript stability. 
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zebrafish and Xenopus laevis embryos)17 depicting how ribosome dormancy 
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For example, in early embryos of multiple species, U-rich elements 
in UTRs are stabilizing and C-rich elements are destabilizing101,110,116. 
The exact mechanisms by which these motifs exert differential stabil-
ity remain unclear, although they could involve specific RBP binding 
(such as the poly(C) binding protein)101,110, their sequence similarity 
to other important motifs (such as the CPE motif)70 or their effect on 
translation70,87,127.

Transcript uridylation128 also drives maternal clearance. At MZT 
onset, many species (although not D. melanogaster) add uridyl resi-
dues to the 3′ end of transcripts with very short (<25 nucleotides) 
poly(A) tails to mark them for decay72,129–132. In zebrafish and X. laevis, 
maternally deposited terminal uridyltransferases TUT4 and TUT7 
drive M-decay129, whereas mouse TUT4/7 expression shapes the tran-
scriptome during oogenesis133, with zygotic expression facilitating 
Z-decay131 (Fig. 3b). TUT4/7-mediated mRNA clearance is required 
for gastrulation in zebrafish and X. laevis129 and development past the 
four-cell stage in mice131.

Overall, it is becoming evident that these decay mechanisms com-
prise a regulatory toolkit that enables embryos to repress translation 
or induce mRNA decay, depending on the exact developmental time 
to meet the demands of the growing embryo.

Translation-dependent mechanisms of mRNA clearance. During 
translation, mRNAs are extensively bound by ribosomes, which are 
increasingly recognized as universal regulators of transcript stability5. 
Codon usage bias has recently been linked to ribosome dynamics 
and its effect on transcript stability and translation efficiency134–136. 
Transcripts enriched with optimal codons have long poly(A) tails and 
are efficiently translated135,136, whereas ribosomes stall at non-optimal 
codons and trigger transcript deadenylation through a conforma-
tional change that involves recruitment of the NOT5 subunit of the 
CCR4–NOT complex to the ribosome E-site137 (Fig. 3c). Codon optimal-
ity is a conserved regulator of transcript dynamics during MZT135,136. 
The increase in translational activity in the embryo exposes trans
cripts to ribosomes that preferentially clear mRNAs with non-optimal 
codons, which gives rise to an intrinsic mRNA decay rate and regulates 
M-decay independently of zygotic transcription134–136,138. Differential 
decay rates between optimal and non-optimal transcripts are lost 
when translation is blocked by cycloheximide, highlighting the cen-
tral role of translation in decay135. The prevailing view is that tRNA 
availability is a key contributor to codon optimality. We speculate 
that changes in tRNA availability during the MZT or later in embry-
onic development139,140 could trigger differential transcript stability 
between maternal and zygotic states, or across different cell types. 
However, tRNA levels explain only part of this effect and it is likely 
that encoded amino acids and peptide sequences141,142 also influence 
mRNA stability. Disentangling their respective effects on transcript 
stability remains a major challenge.

Other mRNA features that lower translation rates also negatively 
impact mRNA stability. In zebrafish embryos, mRNAs with long open 
reading frames (ORFs), upstream ORFs or weak Kozak sequences 
exhibit lower translation initiation143–150 and are bound by the surveil-
lance factor Upf1, which promotes ORF-mediated decay by recruiting 
decapping and deadenylation factors150 (Fig. 3c). The absence of Upf1 
on highly translated mRNAs suggests that the helicase activity of the 
actively translating ribosome displaces Upf1, thereby suppressing 
decay150. The conserved role of ORF-mediated decay in regulating 
mRNA stability in human cells150 indicates that this is likely a universal 
mechanism for regulating transcript levels and further highlights 

the key role of the ribosome in cytoplasmic reprogramming. RNA 
secondary structure can also modulate translation (Fig. 3b), and 
thereby stability, by acting as internal ribosome entry sites151 or by 
inhibiting ribosome recruitment152. Powerful new methods described 
in preprints, such as NaP-TRAP and polysome profiling with massively 
parallel reporter assays87,127, that measure how specific sequence 
elements (such as UTRs or peptide sequences) affect translational 
efficiency will further identify transcript features that contribute to 
translation-dependent maternal transcript dynamics.

Importantly, transcript stability is controlled by multiple regula-
tors that often work simultaneously. Destabilization by non-optimal 
codons or long ORFs can be counteracted by long 3′ UTRs, which 
promote stability by reducing deadenylation136,150. A transcript that 
requires slow translation for efficient protein folding could use 3′ UTRs 
or other stabilizing elements to reduce decay. High codon optimality 
of a transcript reduces its sensitivity to ORF-mediated decay150 or 
maternal clearance factors, such as miR-430 in zebrafish or Pumilio in 
D. melanogaster120,138. Remodelling of mRNA structure153 by the trans-
lating ribosome during the MZT can affect how stability-regulating 
motifs are interpreted154. Lastly, mRNA regulatory features with 
opposite effects can provide temporal stability control; for example, 
a zebrafish transcript may be stable early in embryogenesis due to 
U-rich elements that protect against M-decay, but miR-430 target 
sites and AU-rich elements may cause its destabilization and drive 
Z-decay at later stages110. Taken together, translation-independent 
and translation-dependent decay clearance mechanisms, from both 
maternal and zygotic programmes, provide a finely tuned system of 
regulatory elements that enable precise control of maternal transcripts 
in response to the cellular and developmental needs of the embryo.

Reprogramming of the maternal proteome. Similar to maternal tran-
scripts, oocyte-deposited proteins are stable. In mammalian oocytes, 
cytoplasmic lattice structures have a key role in sequestering and sta-
bilizing oocyte proteins155; mutations in genes encoding cytoplasmic 
lattice proteins are linked to female infertility, highlighting the impor-
tance of this protein stability156. However, protein dynamics during 
the MZT remains an understudied area of research. Matched mRNA 
translation and proteome data from embryos often show discordant 
patterns, indicating that translation data cannot predict the proteomic 
landscape41,46,157. Recent advances in low-input proteomics methods 
now enable proteome changes during the MZT to be quantified, prom-
ising exciting new research avenues. In D. melanogaster, X. laevis and 
mouse, protein turnover during early embryogenesis is much lower 
than transcript turnover; many oocyte-inherited proteins persist well 
after ZGA, with many maternally provided proteins found in eight-cell 
mouse embryos157–160. In zebrafish, maternally deposited proteins can 
persist for many days, allowing zygotic mutants for essential genes to 
survive through the early stages of development161. However, specific 
maternally provided proteins, such as Smaug80,112 and the translational 
repressor complex ME31B–TRAL–Cup in D. melanogaster76,125, are sys-
tematically cleared by the ubiquitin–proteasome system159,162, which is 
also essential for proper MZT progression in mouse163. Other proteins 
seem to be present at constant expression levels throughout MZT but 
are highly translated, suggesting that high protein synthesis rates can 
counteract maternal protein degradation41. Protein re-localization 
from the cytoplasm to the nucleus is also emerging as an important 
aspect of reprogramming the embryo proteome towards a zygotic 
programme160,164. Despite these new insights, protein dynamics during 
the MZT deserve more attention.
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ZGA: a nuclear reprogramming event
Concurrently with cytoplasmic reprogramming, the early embryo 
reprogrammes the terminally differentiated sperm and oocyte nuclei 
into a totipotent state compatible with zygotic transcription. Here, we 
describe nuclear remodelling at all scales that enable ZGA (Fig. 4A,B), 
a molecular model for transcriptional activation (Fig. 4C) and the pre-
vailing models for ZGA timing (Fig. 5). Conventionally, ZGA has been 
viewed as two ‘waves’: the initial minor wave encompassing the earliest 
transcriptional events (‘first ZGA events’), followed by the major wave 
with robust transcription (‘robust ZGA’ or ‘large-scale ZGA’)3 (Fig. 1b). 
This notion of two distinct waves would suggest that transcriptional 
activation is discontinuous, but recent experiments measuring zygotic 
gene expression suggest that zygotic transcripts accumulate in a more 
gradual and continuous process9–12,15,30. To emphasize that ZGA unfolds 
gradually3, we therefore avoid using these terms in this Review. It is 
important to note, however, that there are indeed notable mechanis-
tic differences between the earliest and later-transcribed ZGA genes, 
suggesting molecular changes in transcriptional regulation as ZGA 
unfolds90,165–167. These differences, as well as differences between 
maternal and zygotic transcripts, are described further below.

By the time of large-scale ZGA, the nuclear reprogramming of the 
embryo is well underway. By contrast, cytoplasmic reprogramming 
remains in progress, with maternal transcripts still dominating the 
transcriptome owing to delayed, ZGA-dependent modes of maternal 
mRNA clearance (that is, Z-decay). For example, in zebrafish embryos, 
zygotic transcripts comprise only ~10% of the transcriptome even 2.5 h 
after the onset of large-scale ZGA30. Maternal influence thus persists 
long after ZGA, with embryo development under both maternal and 
zygotic control for some time before the embryo gains full control of 
its own development (Fig. 1a).

Mechanisms of nuclear reprogramming at ZGA
Activation of ZGA by (pioneer) transcription factors. During nuclear 
reprogramming, pioneer transcription factors (PFs), chromatin remod-
ellers (CRs) and histone modifying enzymes together reprogramme 
and prime chromatin to promote zygotic transcription (Fig. 4A). PFs 
can bind condensed, nucleosomal DNA, facilitating chromatin remod-
elling and accessibility for subsequent binding by other factors168. 
The D. melanogaster pioneer factor Zelda was the first identified ZGA 
regulator169–171, followed by Nanog, Pou5f3 (OCT4 homologue) and Sox19b 
(SOX2 homologue) in zebrafish45,172. Underscoring their collective role in 
regulating ZGA, the combined loss of two or three zebrafish factors leads 
to a stronger developmental defect than loss of any single factor173–175. 
Similarly, in X. tropicalis, Pou5f3 and Sox3 together remodel chromatin 
to establish ZGA176, alongside Foxh1 and germ layer-specific TFs177,178.

ZGA-initiating TFs often display a temporal hierarchy. In D. mela-
nogaster, Zelda acts earliest, followed by GAF179 and CLAMP180,181. Sub-
sequently, zygotic Opa activity during gastrulation regulates later 
developmental patterning182,183. In mouse, OBOX family TFs act earliest, 
with the maternal-zygotic knockout (by genetic deletion of the Obox 
gene cluster) causing a two-cell to four-cell arrest184, resembling the 
two-cell arrest observed using chemical inhibition of transcription185. 
OBOX factors are highly translated in one-cell zygotes and regulate the 
accessibility and transcriptional activation of the earliest transcribed 
zygotic genes184. The maternal knockout alone does not display a pheno
type, however, indicating that maternal OBOX proteins cannot be the  
only regulators of ZGA184. In humans, knockdown of TPRX family pro-
teins, which share homology with the mouse OBOX proteins186, results 
in downregulation of many ZGA genes, although it remains unclear 
whether TPRX proteins act as pioneer factors to regulate chromatin 
accessibility48. In mice, the pioneer factor NR5A2 and/or other orphan 
nuclear receptors have also been implicated as major ZGA regulators, 
because chemical inhibition of NR5A2 results in downregulation of 
~70% of ZGA genes and two-cell arrest18,187. However, a recent study indi-
cates that embryos derived from oocytes with conditional genetic dele-
tion of Nr5a2 are viable188, suggesting that either maternally provided 
NR5A2 is dispensable for ZGA or it functions redundantly with other 
factors, such as related nuclear receptor proteins (NR5A1 or NR2C2) 
that are also inhibited by the NR5A2 chemical inhibitor187. NR5A2 is 
strongly upregulated in two-cell embryos, contributing to the four-cell 
to eight-cell transcriptional programme, and is required for develop-
ment past the morula stage, indicating that it regulates gene expression 
programmes for extended periods during embryogenesis, beyond 
ZGA188–192. Although other mouse TFs with demonstrated pioneering 
activity, such as NFY193 and the zygotically expressed DUX194–197, also 
contribute to chromatin accessibility and early gene expression, single 
knockout (Dux) or knockdown (Nfya) mice survive beyond ZGA193,198,199. 
However, double or triple-knockouts or knockdowns may have more 
pronounced effects on mouse ZGA and development200 due to the 
combinatorial and potentially compensatory action of these factors, 
as observed in zebrafish173–175. Altogether, it is becoming increasingly 
clear that many factors involved in ZGA also have later functions in 
development and that a complex process such as ZGA is regulated by 
the coordinated action of multiple TFs.

Upon binding to nucleosomal DNA, PFs initiate chromatin opening 
through multiple mechanisms168. Some PFs recruit CRs such as SWI/SNF, 
which can evict nucleosomes, to further open chromatin201. CRs there-
fore also likely have critical roles in ZGA46,202,203. Additionally, PFs pro-
mote histone acetylation by recruiting the histone acetyltransferases 
(HATs) p300 or CBP173,204,205. Ultimately, pioneering activity locally 

Fig. 3 | Molecular mechanisms governing maternal transcript clearance. 
a, Maternal transcript clearance events can be driven by maternally deposited 
proteins and proteins translated from maternal mRNAs (maternal decay 
(M-decay)) or zygotically expressed factors such as microRNAs (miRNAs) 
or proteins (zygotic decay (Z-decay)). b, Translation-dependent (left) and 
translation-independent (right) mechanisms govern maternal transcript 
stability and clearance dynamics during the maternal-to-zygotic transition 
(MZT). Different elements or features of an mRNA transcript and trans-
acting factors that regulate decay during the MZT are shown. Universal 
mechanisms or regulators used by multiple species are coloured grey. Species-
specific regulators are highlighted in other colours (Drosophila melanogaster, 
blue; zebrafish, yellow; Xenopus spp., green; mouse, red) (Table 1).  

c, Different mechanisms can recruit the CCR4–NOT complex, leading to 
deadenylation and decay. Translation-independent decay mechanisms 
include recruitment via Argonaute (Ago)-bound miRNA and TNRC6 or via RNA 
binding proteins (RBPs) (D. melanogaster Smaug is shown as an example), 
although miRNAs and RBPs can also directly affect translation independent 
of decay. Translation-dependent decay mechanisms include recruitment via 
non-optimal codons and Upf1. Phosphorylated Upf1 recruits CCR4–NOT on 
long open reading frames (ORFs) but is counteracted by the higher translation 
rates of shorter ORFs, thereby preventing Upf1-induced deadenylation. 
BRAT, Brain tumour; CDS, coding sequence; endo-siRNA, endogenous 
short interfering RNA; m5c, 5-methylcytosine; m6A, N6-methyladenosine; 
piRNA, Piwi-interacting RNA; UTR, untranslated region.
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opens chromatin for subsequent binding and activation by other TFs 
and transcriptional machinery173,176,206–209 (Fig. 4A,B). For example, PFs 
can displace nucleosomes at developmental enhancers, making them 
accessible for later activation by non-PFs required for developmental 
patterning, such as Dorsal and Bicoid in D. melanogaster206,207,210–212 or 
Eomes in zebrafish173. Some loci are bound by multiple TFs but require 
only one of the factors for chromatin opening, with the other TFs 
acting as ‘regular’ TFs (Fig. 4A). These roles can switch at different 
loci173,174,206, supporting the view that pioneer function is not solely an 
intrinsic protein property but strongly depends on the specific circum-
stances including nucleosome position, TF concentration, genomic 
sequence and the chromatin context213–215. Contrary to the canonical 
view that nucleosomes impede TF binding, they can instead facilitate 
PF binding. The D. melanogaster pioneer factor Zelda and the zebrafish 
PFs bind sites with high intrinsic nucleosome occupancy173,207,208, and 
X. laevis Foxh1 preferentially binds nucleosomal sites rather than linear 
DNA216. Strongly positioned nucleosomes facilitate zebrafish PF activ-
ity, and therefore lower PF concentrations, or fewer TFs, are required 
for opening173, perhaps by stabilizing motifs in a better conformation 
for binding or participating directly as part of the binding complex 
(Fig. 4A). Many PFs preferentially bind motifs at specific positions 
relative to the nucleosome, and thus nucleosomes enhance bind-
ing specificity, which is partially provided by the nucleosome–DNA 
interface, although other mechanisms exist18,19,168,217–219. Additionally, 
nucleosomes can promote TF co-occupancy, further highlighting 
their positive effect on pioneering activity220. Epigenetic marks such as 
histone modifications also influence pioneering activity221, with histone 
H3 trimethylated at lysine 9 (H3K9me3) impeding binding222 and H3 
acetylated at lysine 27 (H3K27ac) promoting TF cooperativity223, illus-
trating how the epigenetic landscape influences ZGA (see the section 
‘Epigenetic reprogramming’).

Multiple pioneer factors can act synergistically to open chromatin 
at some sites, and pioneering ability can depend on other expressed 
factors19,173,174,222,224–226 (Fig. 4A). Conversely, TFs can compete with 
and antagonize each other. For example, Pou5f3 in zebrafish has a 
repressive function at some sites by blocking precocious expression 
of Nanog174. D. melanogaster GAF227 and X. tropicalis Foxh1 (ref. 177) can 
also exert repressive effects in specific contexts. This repression could 
be due to direct repressor recruitment177 or through competition with 
other TFs for limited transcriptional machinery. Alternatively, this 
counterintuitive repressive effect of a PF could be due to the displace-
ment of a nucleosome, which could subsequently alter the position of 

a neighbouring nucleosome and thereby affect the affinity of other 
TFs to their binding sites. How multiple TFs integrate the nucleosomal 
landscape to orchestrate transcriptional activation across the genome 
is a fundamental question for the field to address.

Epigenetic reprogramming. Fertilized embryos inherit differentiated 
chromatin from the gametes, which is reprogrammed into a naive state 
essential for zygotic development. Here, we highlight several epige-
netic reprogramming events in early embryos, primarily focusing on 
commonalities across species. We note that we cannot exhaustively 
review all epigenetic marks and the differences among all species, and 
refer readers to recent reviews that cover species-specific differences 
in depth228–232.

In vertebrates, DNA cytosine methylation produces 5mC, which is 
strongly linked to transcriptional repression. After fertilization, mam-
malian embryos erase the global DNA methylation pattern, creating a 
hypomethylated, totipotent state. 5mC is actively and rapidly removed 
from the paternal genome at the one-cell stage whereas maternal 5mC is 
removed more gradually. Mammalian embryos gradually re-establish 
methylation after preimplantation development6. Unlike mammals, 
zebrafish and X. laevis embryos do not rapidly reprogramme 5mC 
methylation post fertilization233–235, perhaps due to gradual resetting 
of the methylation pattern during the many cell cycles before ZGA 
occurs. In zebrafish, maternal methylation is reprogrammed to the 
paternal pattern, even in haploid embryos, indicating that the genome 
or epigenome encodes the eventual methylation pattern233.

Histone variants are dynamically reprogrammed in early embryos 
and collectively regulate the global (H1 variants and H3.3) and local 
(H2A.Z) chromatin landscape to prepare the embryo for ZGA. H1 linker 
histones modulate chromatin compaction, with embryo-specific vari-
ants maintaining a less compact, naive state and facilitating rapid cell 
divisions. These H1 variants are replaced by somatic variants during 
ZGA236–242. Sperm chromatin (except in zebrafish) is compacted primar-
ily by protamines, with a few nucleosomes and modifications retained 
at a subset of developmentally important loci243,244. The H3 variant H3.3 
is critical for protamine-to-histone reprogramming. Maternal H3.3, 
which is deposited independently of DNA replication, incorporates 
into the paternal genome post fertilization245–247. The H3.3 chaperone 
HIRA is essential for X. laevis gastrulation248 and is also required for 
reprogramming the maternal genome in mouse247. H3.3 is broadly 
distributed in mouse zygote and oocyte genomes but incorporation of 
canonical H3 proteins (H3.1 and H3.2) by the CAF1 histone chaperone 

Fig. 4 | Transcriptional competency is achieved by nuclear remodelling. 
Aa, Pioneer transcription factors (PFs) can bind cis-regulatory elements 
(CREs) on nucleosomal DNA, making them accessible for other factors, such 
as activators (‘Act’) or repressors (‘Rep’). Ab, Pioneering activity can require 
cooperative interactions. PF binding sites can be suboptimal (striped CRE) 
at weakly positioned nucleosomes, requiring increased PF concentration 
and/or cooperative action. Ac, PFs can act as a ‘regular’ transcription factor (TF) 
depending on the specific locus. B, Nuclear remodelling on multiple scales. 
Ba, Global genome architecture, in the form of A (‘active’) and B (‘inactive’) 
compartments and topologically associating domains (TADs), arises during the 
maternal-to-zygotic transition (MZT) in most species. Bb, Local chromatin forms 
enhancer–promoter contacts to initiate zygotic transcription. Bc, At CREs, PFs 
change the nucleosome landscape, making them accessible to other TFs and 
chromatin remodellers (CRs). Maternally deposited zygotic genome activation 
(ZGA)-regulating TFs with demonstrated or suggested pioneering ability in 

different species are listed (Drosophila melanogaster, blue; zebrafish, yellow; 
Xenopus spp., green; mouse, red). Bd, Histone tail modifications are also 
remodelled and form bivalent modifications in some species. Bars represent 
the timing of acquisition of different marks relative to the onset of ZGA. Histone 
H3 acetylated at lysine 27 (H3K27ac), mediated by histone acetyltransferases 
(HATs) p300/CBP, is essential for ZGA. C, Our hypothesized transcription 
regulation model postulates a central role for acetylated histones: transient 
promoter–enhancer contacts initiate transcription (step 1); productive 
transcriptional elongation by RNA polymerase II (Pol II) ‘kicks’ enhancers away 
from promoters, and acetylated nucleosomes retain enhancer–promoter contact 
memory (step 2); after histone deacetylase (HDAC)-mediated deacetylation, 
the transcriptional burst is terminated (step 3); and transcriptional re-initiation 
requires renewed enhancer–promoter proximity and histone acetylation (step 4). 
This proposed model will require testing in the future. H3K4me3, histone H3 
trimethylated at lysine 4; H3K27me3, histone H3 trimethylated at lysine 27.
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leads to a more restricted distribution by the two-cell stage249. Inter-
estingly, maternal H3.3 stores improve SCNT efficiency and suppres-
sion of CAF1 improves in vitro reprogramming efficiency250,251. These 
observations suggest that canonical H3 acts as a reprogramming 

barrier, whereas the embryonic H3.3 landscape promotes transient 
totipotency. The H2A variant, H2A.Z, also primes chromatin for gene 
activation during ZGA in D. melanogaster and zebrafish, especially 
at housekeeping genes252,253. H2A.Z is enriched at the transcription 
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Fig. 5 | Elapsed developmental time is the key regulator of ZGA onset timing. 
a, Wild-type embryos of fast-developing species (zebrafish and Xenopus spp.) 
initiate zygotic genome activation (ZGA) at a high nuclear-to-cytoplasmic 
volume ratio (N:C ratio). When the cell cycle is stalled in pre-ZGA zebrafish and 
Xenopus laevis embryos (by checkpoint kinase 1 (Chk1) overexpression272 or 
cycloheximide treatment45,272,348, for example), the N:C ratio remains unchanged; 
however, ZGA can initiate at a similar developmental time to wild-type embryos, 
even when at a lower N:C ratio. This suggests that an increased developmental 
time window is what creates a permissive state for transcription rather than an 

increased N:C ratio owing to cell division. b, During development, increased 
translation of transcription factors (TFs) (blue), acetyltransferases (yellow) and 
other factors (dark grey) prepares the nucleus for ZGA. Additionally, increased 
nuclear pore complex (NPC) maturation and Importin affinities for TFs regulate 
the nuclear import of these proteins. The cell cycle duration is tightly coupled  
to the N:C ratio and maternally deposited histone proteins are diluted with every 
cell cleavage. Overabundant histones can control ZGA timing by competing 
with TFs for DNA binding. Early cell cycles in fast-developing species include 
only S and M phases; as the cell cycle lengthens, G phases are added.
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start sites (TSSs) of zygotic genes pre ZGA in D. melanogaster252 and, 
alongside H3K4me1, forms ‘placeholder’ nucleosomes in zebrafish253. 
Placeholder nucleosomes maintain hypomethylated states ready 
for early gene activation and their absence keeps developmental 
genes repressed253. A recent preprint has shown that in zebrafish 
embryos, H2A.Z also marks a subclass of enhancers that are labelled 
with H3K4me2 and are hypomethylated (low DNA methylation) due 
to their activity in gametes; these enhancers can be activated inde-
pendently of pioneer factors254. However, H2A.Z may function redun-
dantly with other mechanisms to promote ZGA; even though H2A.Z 
accumulates at gene promoters during ZGA in mice and affects levels 
of developmental genes, knockdown of H2A.Z does not impact the 
onset of ZGA255.

Histone modifications (Fig. 4B) commonly follow an erase and 
rewrite strategy, whereby parental signatures are erased and then 
replaced with zygotic ones. H3K4me3 is canonically found in sharp 
peaks at TSSs of active genes and this signature is globally lost after 
fertilization in D. melanogaster, zebrafish and X. tropicalis165,204,256–258. 
Canonical H3K4me3 peaks may hinder reprogramming, as dem-
onstrated in X. laevis SCNT embryos259. Mouse zygotes lack sharp 
H3K4me3 domains; instead, they inherit broad H3K4me3 domains 
that are paradoxically associated with transcriptional repression31,32, 
similar to non-canonical H3K4me3 domains recently reported in 
C. elegans oocytes and embryos260. The canonical sharp H3K4me3 
pattern is gradually re-established in all species by the time large-scale 
ZGA occurs31,32,204,261–263 and H3K4me3 deposition does not depend 
on zygotic transcription264. However, it is unclear whether H3K4me3 
has a direct role in ZGA because early transcription events can pre-
cede H3K4me3 deposition165,204 and it is dispensable for transcrip-
tion in other contexts265. H3K27me3, which is associated with gene 
repression and silencing, is also largely erased post fertilization 
across species34,256,258,266–268. H3K27me3 levels, similar to H3K4me3, 
increase globally during embryogenesis, although promoter 
H3K4me3 often precedes H3K27me3 (refs. 33,257,261,262,266). ZGA 
precedes the appearance of ‘bivalent’ promoters (those marked by 
both H3K4me3 and H3K27me3) which poise genes for later activa-
tion in development33,34,261,262. In zebrafish, bivalent domains are 
pre-marked by placeholder nucleosomes253, forming a blueprint for 
future differentiation.

Parental histone mark retention can regulate gene expression. 
In mice, despite global erasure of DNA methylation, imprinted sites that 
retain parental methylation patterns show allele-specific expression6, 
and oocyte-inherited H3K27me3 contributes to imprinting269. Maternal 
H3K27me3 in D. melanogaster and histone H2A ubiquitination (H2AUb) 
in mouse embryos prevent precocious expression of developmental 
genes, such as Hox genes267,270. Some inherited modifications, such as 
maternal H4K16ac in D. melanogaster, facilitate chromatin accessibility 
before ZGA271, whereas inter-nucleosome accessibility in zebrafish is 
independent of histone acetylation across several core histone tails173.

Histone acetylation universally regulates transcription-permissive 
chromatin and always precedes genome activation (Fig. 4B). The most 
studied mark, H3K27ac is initially erased after fertilization, increases 
before zygotic transcription and persists during transcriptional ini-
tiation in most species204,272–274. Mouse one-cell zygotes, however, 
are globally hyperacetylated through the action of P300/CBP HATs 
and have broad H3K27ac domains (similar to the broad H3K4me3 
domains) which return to canonical sharp H3K27ac patterns by 
the two-cell stage275. PFs that regulate ZGA in D. melanogaster and 
zebrafish can establish histone acetylation across all core histones173,204 

at target enhancers and promoters173,204 by recruiting P300/CBP173. 
Inhibition of P300/CBP in multiple species significantly compromises 
ZGA256,272,275,276, whereas its overexpression in zebrafish induces pre-
mature ZGA272. Although the catalytic HAT activity of CBP/P300 is 
dispensable for ZGA in D. melanogaster277, in zebrafish it is sufficient to 
activate transcription independently of PFs when recruited to specific 
loci173. This sufficiency is important as it suggests that the main function 
of these TFs is to recruit HATs to enhancers and promoters. It resolves 
a long-standing question about the relationship between histone 
acetylation and transcription, indicating that acetylation is essential for 
transcriptional activation. However, histone acetylation does not occur 
in isolation; histone deacetylases (HDACs) constantly reduce and refine 
acetylation levels. This deacetylation ensures proper lineage-specific 
gene expression in X. tropicalis278 and represses later developmental 
genes in mouse275. Therefore, histone acetylation primes ZGA and 
orchestrates the precise timing and location of gene expression. These 
observations have led us to propose a new model that highlights the 
role of histone acetylation in transcription initiation (see the section 
‘Mechanism of transcriptional activation’).

Chromatin remodelling. During the MZT, three-dimensional chro-
matin organization undergoes comprehensive remodelling (Fig. 4B) 
(reviewed in depth elsewhere7,8,279). The highly defined oocyte chroma-
tin organization transitions to a naive state pre ZGA, before gradually 
regaining complexity7,37,38. Broadly, chromatin partitions into A (‘active’) 
and B (‘inactive’) compartments280. In D. melanogaster embryos, the 
heterochromatin protein 1α (HP1α) is vital for de novo B compartment 
formation, suggesting independent mechanisms for A and B compart-
ment segregation281,282. Conserved HP1α (refs. 281,283) likely plays an 
important part in chromatin structure across species. A/B compart-
ments emerge around ZGA in D. melanogaster284,285, X. tropicalis286, 
mice37,38 and human embryos287, whereas in zebrafish288–290 they do not 
emerge until after MZT (Fig. 4B).

Strong topologically associating domains (TADs) form concomi-
tantly with ZGA in all species but form independently of transcrip-
tion37,284–286,288 (except in human embryos, in which blocking ZGA affects 
TAD formation)287. TADs range in size from  ~10 kb to a few megabases 
and act as regulatory scaffolds291 that are thought to promote frequent 
promoter–enhancer interactions for robust target gene expression. 
They feature sharp boundaries formed by architectural proteins such 
as CTCF and cohesin287,292 and the PF Zelda contributes to locus-specific 
TAD boundary formation284,293. Disruptions in TAD organization lead to 
severe developmental defects in humans such as limb malformations 
in the form of brachydactyly (short digits), syndactyly (finger fusion) 
and polydactyly294.

The lack of compartmentalization and TADs before ZGA suggests 
that relaxed chromatin is a hallmark of developmental reprogramming 
and totipotency. Indeed, loss of cohesin enhances SCNT295 and loss 
of CTCF enhances in vitro reprogramming296, indicating that a flex-
ible chromatin structure enables reprogramming factors to change 
regulatory interactions and induce pluripotency295,296. Furthermore, 
during embryogenesis and SCNT, some chromatin-modifying proteins 
exhibit the erase and rewrite strategy, transiently dissociating to gen-
erate relaxed chromatin297,298, which also facilitates the pluripotent to 
totipotent-like transition in embryonic stem cells299.

Zelda can promote promoter–enhancer interactions before TAD 
formation300, and several studies show a limited correlation between 
gene expression and TAD structure301–304. Therefore, TADs likely 
play a bigger part in preventing promiscuous promoter–enhancer 
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interactions than actively promoting specific ones. The impact of gene 
expression on chromatin organization at the molecular level remains 
unclear. New techniques to visualize chromatin with nucleosome-level 
resolution, such as chromatin expansion microscopy (ChromExM)29 and 
ChromEM tomography (ChromEMT)305, promise to provide additional 
insight into three-dimensional chromatin reprogramming during MZT.

Mechanism of transcriptional activation
TF and co-activator binding, enhancer activation via histone acety-
lation and pre-initiation complex formation at cis-regulatory ele-
ments (CREs) are all key for transcriptional activation (Fig. 4B). 
Intrinsically disordered regions in TFs aid transcriptional activa-
tion by non-specifically binding to DNA and reducing the target 
search space306, or by forming nuclear membraneless ‘condensates’ 
or ‘hubs’ to increase the local concentration of TFs, co-activators 
and RNA polymerase II (Pol II)307,308. Dynamic clustering of TFs and 
co-activators at enhancers facilitates Pol II recruitment and transcrip-
tional activation309–311. In D. melanogaster, Zelda hubs modulate the 
nuclear microenvironment and activate transcription205,212,312,313, while 
in zebrafish, pioneer factors cluster at the miR-430 locus (and other 
loci) before transcriptional activation29,307. A new high-resolution 
microscopy technique enabled the visualization of Nanog–Pol II 
interactions at the miR-430 locus29, supporting the classic model of 
TF-mediated Pol II recruitment. Future applications of such techniques 
promise more direct insight into TF clustering and the mechanism of 
Pol II recruitment by TFs and co-activators.

Histone acetylation is essential for transcriptional activation 
by promoting recruitment of transcription co-factors and Pol II. 
Furthermore, in vitro studies showed that acetylation at cis-regulatory 
regions disrupts chromatin-induced phase separation, whereas 
acetylation-reader bromodomain proteins such as BRD4 induce dis-
tinct droplet phases of acetylated chromatin, facilitate pre-initiation 
complex formation and form condensates with Mediator in mouse 
embryonic stem cells308,314–316. Restoring acetylation to enhancer 
and/or promoter regions can activate zygotic transcription in zebrafish 
embryos173. Thus, acetylation specifically promotes enhancer-mediated 
transcriptional activation.

Transcription initiation relies on enhancer–promoter interac-
tions317, but how close these interactions must be to initiate and sustain 
transcription remains unclear318–321. Imaging studies are inconsistent 
and seemingly contradictory, potentially due to locus-specific behav-
iour influenced by the chromatin microenvironment, microscopy 
resolution limitations or a need to integrate the acetylation status or TF 
occupancy when studying transcriptional output. Enhancer–promoter 
contacts are proposed to occur transiently according to the ‘kiss-and-
run’ model322. This model was updated by the recent ‘kiss-and-kick’ 
model, based on ChromExM and genomics methods during ZGA, 
which suggests that productive transcriptional elongation kicks 
the enhancer away from the promoter, thereby disrupting this tran-
sient interaction29. This updated model is consistent with findings 
that nascent RNA can displace inactive chromatin from the region  
of active transcription323,324. We propose a further integrated model of  
transient enhancer–promoter contacts (Fig. 4C), whereby histone 
acetylation provides a memory of contact information and eliminates 
the need for continued promoter–enhancer proximity. HDACs can 
erase the initial contact memory, terminating the current transcrip-
tional burst. Transcription can be re-initiated via renewed transient 
enhancer–promoter proximity and acetylation. Future experiments 
combining high-resolution microscopy of specific enhancer–promoter 

interactions with histone marks and transcription will be required to 
test this model.

Timing of zygotic transcription
In fast-developing species, initial cleavage cycles (nuclear cycles in 
D. melanogaster) occur without cell growth, leading to decreasing 
cytoplasmic volumes and resulting in a higher nuclear-to-cytoplasmic 
volume ratio (N:C ratio). This ratio is crucial for determining the cell 
cycle length, which slows just before gastrulation. Large-scale ZGA coin-
cides with the mid-blastula transition (MBT) when the cell cycle slows 
(Box 1), prompting research into the potential co-regulation of cell 
cycle duration and ZGA onset. We discuss the effect of cell cycle length, 
N:C ratio, developmental time and translation on zygotic transcription 
in fast-developing species (Fig. 5). The contribution of these features 
is less studied in slow-developing mammalian embryos, in which cell 
cycles are slow from the onset of fertilization.

Early cell cycles are driven by cyclin and cyclin-dependent kinase 
(Cdk) activity. Remodelling of the cell cycle at the MBT involves desta-
bilizing the Cdk-activator Cdc25 (refs. 325–328) and activating check-
point kinase 1 (Chk1), which blocks replication origin formation326,329. 
Longer cell cycles facilitate robust zygotic transcription, as shorter 
cycles limit the transcription time window. Yet extending interphase 
by precocious Chk1 activity does not trigger early onset of large-scale 
ZGA272,330. Early zygotic transcription events contribute to the length-
ening of cell cycles331,332, indicating that transcription and cell cycles 
influence each other.

The N:C ratio directly impacts MBT timing by extending the cell 
cycle but whether it has a direct role in regulating zygotic transcription 
timing remains ambiguous. In X. laevis, cell cycle lengthening results, 
in part, from the titration of maternally deposited replication factors 
(Cut5, RecQ4, Treslin and Drf1 (ref. 333)) and the phosphatase PP2A-B55 
(ref. 334) relative to the increasing amount of DNA via cell divisions. 
Another proposed mechanism for regulating transcriptional onset 
is the dilution of histones, which compete with TFs for DNA binding; 
histone overexpression or depletion modulates ZGA onset in zebrafish 
and X. laevis335,336. H3 tails can also act as a competitive inhibitor of Chk1 
in D. melanogaster337,338. Changing the N:C ratio or ploidy affects gene 
activation timing272,339–345. However, embryos adjust the cell cycle num-
ber and duration in response to ploidy changes346,347, confounding the 
interpretation of whether the N:C ratio regulates ZGA onset directly, or 
indirectly through cell cycle lengthening. In X. laevis, a cell-size gradient 
along the animal to vegetal axis correlates with ZGA timing, support-
ing the notion that an N:C ratio threshold determines ZGA onset341,348. 
However, differential localization of maternal TFs178 could contribute to 
differences in ZGA timing. We hypothesize that differential translation 
of maternal mRNAs across the animal to vegetal axis could drive changes 
in cell cycle speed and the onset of ZGA through independent mecha-
nisms. Indeed, blocking cell cycle progression can lead to transcriptional 
activation at a lower N:C ratio272,348–350, indicating that a high N:C ratio 
is not absolutely required to activate transcription (Fig. 5a). The direct 
effect of the N:C ratio on transcriptional activation is gene-dependent, 
with live imaging343 and gene expression analyses272,345,351 in haploid 
embryos indicating that some genes sense N:C ratio whereas others 
respond mainly to cell cycle duration. We propose that because each 
gene has specific requirements for TFs or nucleosome positioning, they 
respond differently to varying levels of histones and TFs, and thereby 
exhibit differential sensitivity to changes in the N:C ratio.

ZGA requires transcriptional activators such as PFs, p300/CBP and 
components of the general transcriptional machinery (such as TBP)352 

http://www.nature.com/nrg


Nature Reviews Genetics

Review article

to reach a threshold level through translation. Indeed, transcriptional 
activation can occur at lower N:C ratios (stalled cell cycle) without 
repressor dilution in D. melanogaster and zebrafish, as long as enough 
developmental time has passed272,350. Furthermore, blocking transla-
tion of maternal mRNAs before they have reached a critical concentra-
tion blocks zygotic transcription in zebrafish, D. melanogaster and 
X. laevis45,272,348,349. These observations are consistent with a role for 
developmental time in genome activation by allowing translation of 
the necessary maternal factors, including TFs, HATs and other trans
criptional regulators (Fig. 5b). Stochastic activation of ZGA within an 
embryo272 could be explained by some individual cells accumulat-
ing threshold levels of transcriptional regulators earlier than others. 
Although premature Zelda expression alone does not result in pre-
mature ZGA in D. melanogaster353, overexpression of P300 or BRD4 in 
zebrafish drives earlier ZGA onset272. Recent studies implicate increased 
nuclear abundance of maternal TFs as an important regulator of the 
ZGA clock; increasing nuclear pore maturity164 and differential affin-
ity to Importin160, which regulates nuclear import and is essential for 
ZGA354, influences TF nuclear import timing. Collectively, these data 
indicate that developmental time, by enabling nuclear accumula-
tion of PFs and other transcriptional regulators through translation 
and regulated import, is the rate-limiting step for competence of 
genome activation.

Zygotic transcripts
Numerous approaches can be used to differentiate zygotic mRNAs from 
the more abundant maternal mRNAs in early embryos, such as using 
intron sequencing reads as a proxy for nascent transcription45,355,356, 
uridine analogue-labelled RNA pull-down10,12,272,276,348,357, metabolic 
RNA sequencing30,358 or distinct promoter and/or TSS usage relative to 
maternal mRNAs167,264. Initial zygotic gene expression is often stochastic 
and heterogeneous but is later averaged spatially or temporally272,359–361. 
Localized gene activation, combined with maternal mRNA degrada-
tion, also contributes to spatiotemporal patterning112,114. In Xenopus 
spp., ectodermal genes are activated before endodermal genes, with 
signalling gradients contributing to regional ZGA176,348. The earliest 
zygotic transcripts in fast-developing species are shorter and have 
fewer introns10,12,45,114,165,362 than later transcripts, and include miRNAs 
that clear maternal transcripts11,81,82,89. In mice, one of the earliest 
transcribed genes encodes ZSCAN4, which helps to protect against 
genomic instability363,364. In D. melanogaster and mice, transposable 
elements12,365,366 are also transcribed early, including short interspersed 
nuclear elements (SINEs), long interspersed nuclear elements (LINEs) 
and murine endogenous retrovirus-L (MERVLs) that comprise a large 
fraction of the mouse genome and are essential for early embryonic 
development366–371. We postulate that evolutionary pressures driving 
transposon activation soon after fertilization, enabling their spread in 
the germ line, have been harnessed over time to regulate other zygotic 
genes. SINE B1 elements are enriched at ZGA genes and contain binding 
sites for NR5A2 and OBOX187,190. LINE-1 elements regulate global chroma-
tin accessibility, activate ZGA genes and are required for Dux silencing 
and rRNA synthesis367–369. MERVL is transiently upregulated during 
ZGA366 by OBOX and DUX184,372, and its long terminal repeat has been 
co-opted as CREs by ZGA-specific genes370,372,373. MERVL is subsequently 
downregulated by LINE-1 RNA activity and by DUX-activated DUXBL, 
thereby limiting MERVL expression to a defined time window368,374. 
These transposable elements may also be important for reducing 
precocious transcription across other genomic sites; for example, 
in mouse embryonic stem cells, endogenous retroviruses can ‘hijack’ 

transcriptional condensates away from other loci375, and in zebrafish, 
miR-430 and repetitive element transcription can serve as a ‘sink’ for 
transcription regulators90,376,377. This framework suggests that the CREs 
of early zygotic genes can act as negative regulators of later-transcribed 
genes, controlling overall transcriptional activation timing.

Mechanistic differences in transcriptional regulation between 
the traditionally called minor and major waves impact transcription 
as ZGA unfolds, including differences in promoter architecture and 
TSS usage. The earliest-expressed D. melanogaster and zebrafish genes 
are enriched for TATA boxes, whereas later-expressed genes use differ-
ent motifs and exhibit increased promoter-proximal pausing26,90,165. 
In mouse embryos, the earliest transcription occurs independently 
of core promoter sequences, often originating promiscuously from 
intergenic regions166. This may be due to global epigenetic changes 
leading to spurious transcription. Some genes are expressed only in the 
one-cell stage378 and isoform switching takes place throughout early 
ZGA379. These differences suggest that the mechanisms for activating 
the earliest transcripts differ from those for later-expressed mRNAs, 
and that there are functional differences through selective splicing or 
promoter usage among the transcribed genes.

Zygotic transcripts also differ from those provided maternally. 
In zebrafish and mouse embryos, the TSSs of maternal transcripts 
feature distinct motifs that differ from those of zygotic transcripts and 
are precisely positioned relative to the +1 nucleosome167,264,380. Maternal 
and zygotic transcript isoforms can have different splice sites and 
UTRs11,72,73,262,379,381. Changes to the coding sequence can impact protein 
identity; differences in upstream ORFs, Kozak sequence or ORF length 
can affect isoform stability and translation87,127,150. These transcript dif-
ferences offer the potential for diverse post-transcriptional regulation 
and add to proteome diversity between the maternal and zygotic states.

Conclusions and future perspectives
Our field has made extensive progress in understanding the molecular 
mechanisms that eventually transition developmental control to the 
embryo. Yet the full orchestration of the cytoplasmic and nuclear repro-
gramming events, and how they together enable genome activation 
from an initially silent genome, remains unclear. Integrating genomic 
techniques with novel imaging methods at the single molecule level will 
enhance our ability to investigate chromatin organization29,305 and the 
dynamics of transcription and translation23–28. An ultimate frontier in 
the field is the high-resolution spatial visualization of translation and 
transcriptional machinery as well as genome architecture, including 
enhancer–promoter interactions, to deepen our understanding of how 
different TFs work together to regulate genome activation and down-
stream gene expression networks21,382. Additionally, elucidating how 
TFs interact with chromatin in vivo at the nucleosome level will shed 
light on how a cell integrates the input of multiple TFs and is crucial for 
understanding the regulation of transcriptional programmes across cell 
types. Future work should also investigate the combinatorial effect of 
gene-specific and/or locus-specific responses, local epigenetic modifi-
cations and chromatin architecture on gene expression. The identity of 
ZGA regulators remains an ongoing question. Many more ZGA-regulating 
factors (PFs and others) will likely be discovered, with future research 
focusing on how their concerted action influences precise gene expres-
sion and embryonic development. Nuclear reprogramming defines 
which genes are initially transcribed but could also prime subsequent 
transcription events, even hours or days later, by regulating other TFs 
through nucleosome positioning and epigenetic remodelling. In the 
future, further integration of machine learning models with massively 
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parallel reporter assays and other genomic approaches will also advance 
post-transcriptional studies to decipher regulatory grammar that shapes 
mRNA stability and translation during development110,116.

Studying other organisms will allow us to understand the conserved 
regulatory principles in MZT and new regulation paradigms383–386. 
For example, bovine ZGA aligns closely with that of human embryos, 
potentially offering a more accurate model of human development387,388. 
Additionally, unique genome features in certain species, such as the 
allotetraploid X. laevis389, will provide distinctive insights into how one 
maternal genome can differentially regulate two evolutionarily dis-
tant zygotic genomes in the same embryo. This will help us to better 
understand how the specific regulatory grammar in the genome leads 
to quantitative changes in gene expression.

The MZT erase and write strategy extends beyond epigenetic 
marks to transcripts and proteins. SLAM-seq has revealed that many 
maternal transcripts are erased and then resynthesized zygotically30. 
This ‘rewriting’ could represent a need for zygotic isoforms with dis-
tinct functions or for untainted molecules without accumulated dam-
age and/or modifications. More sensitive mass spectrometry could 
also reveal erased and resynthesized proteins41 and elucidate roles of 
post-translational modifications, hormones, signalling factors and 
metabolites during the MZT390. Metabolism is a particularly exciting 
avenue to explore because metabolites serve as substrates for histone 

modifications that are important for nuclear reprogramming391. 
Indeed, transient nuclear translocation of TCA cycle enzymes392,393 
and lactate394 modulates key epigenetic modifications during somatic 
reprogramming393 and ZGA in mouse and human embryos392,394. Inves-
tigating how maternal, embryo and yolk metabolites influence chro-
matin, gene expression, protein function and, ultimately, cell fate 
promises intriguing insights391.

Ultimately, we need to remember that the MZT is what initiates the 
gene regulatory cascade crucial for embryogenesis. It plays a key part 
not only in developmental biology but also in human fertility and over-
all human biology. Future research into the epigenetic and mutational 
factors that contribute to MZT failure will be vital for understanding 
how specific mutations affect genome activation and human infertil-
ity. Furthermore, studying the reprogramming of fertilized eggs has 
provided fundamental mechanisms for remodelling the cytoplasm 
and activating genomes to achieve transient totipotency in vivo. The 
embryo is a dynamic non-steady-state system that has served as a 
molecular testing ground for various paradigms across the central 
dogma. Research on this reprogramming will continue to have broad 
implications beyond MZT and provide fundamental insights into 
epigenetics, transcription and post-transcriptional regulation.
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Glossary

CCR4–NOT complex
During maternal-to-zygotic transition 
(MZT), this multiprotein complex 
plays a critical role in regulating gene 
expression by controlling mRNA 
deadenylation.

Cleavage cycles
The series of rapid mitotic cell divisions 
that occur in the early embryo 
following fertilization, essential for 
increasing cell numbers in the embryo 
while maintaining a constant overall 
size, except for Drosophila spp. where 
cleavage cycles occur in a syncytium 
resulting in a growing number of nuclei 
in a shared cytoplasm.

Deadenylation
The process by which the poly(A) tail 
of an mRNA molecule is shortened or 
removed by deadenylating enzymes, 
which regulates the stability and 
lifespan of the mRNA molecule.

Erase and rewrite
A developmental strategy that involves 
the removal (erase) of maternal 
signatures to a naive state, followed 
by the establishment (rewrite) 
of zygotic signatures.

Histone acetylation
Acetyl groups on histone tails that 
modify the functional properties 
of DNA, added by histone 
acetyltransferases (HATs) and removed 
by histone deacetylases (HDACs).

Maternal decay
(M-decay). Refers to the degradation 
of maternally deposited mRNAs 
before zygotic genome activation 
(ZGA) or independent of zygotically 
produced factors.

Maternal-to-zygotic transition
(MZT). The transition period during 
embryogenesis when control 
of embryonic development 
transitions from maternal factors 
to zygotic factors.

Mid-blastula transition
(MBT). A transition phase in embryonic 
development, characterized by 
lengthening cell cycles, acquisition 
of cell motility and, in Drosophila spp., 
cellularization.

Nuclear-to-cytoplasmic 
volume ratio
(N:C ratio). The relative nuclear-to-
cytoplasmic ratio within a cell. During 
embryogenesis (zygote to gastrulation) 
the size of the embryo does not 
change; cell sizes are halved with 
every cleavage cycle.

ORF-mediated decay
A decay pathway driven by the protein 
Upf1, whereby the translation status of 
the main open reading frame (ORF), 
affected by upstream ORFs and ORF 
length, influences decay dynamics.

Pioneer transcription factors
(PFs). Specialized transcription factors 
(TFs) with the unique ability to bind to 
condensed or inaccessible regions 
of chromatin, promoting chromatin 
opening and making these regions 
accessible for other regulatory proteins.

Protamines
Small proteins that replace histones in 
sperm (except in zebrafish) and help 
to compact the sperm genome.

Re-adenylation
(Cytoplasmic polyadenylation). 
Lengthening of poly(A) tails by 
specialized poly(A) polymerases 
in the cytoplasm, which leads to 
translational upregulation.

Totipotent
The ability of a cell to give rise to all cell 
types in an organism, including both 
embryonic and extra-embryonic tissues.

Zygote
Describes a fertilized egg and the 
earliest developmental stage of 
a multicellular organism.

Zygotic decay
(Z-decay). Refers to the clearance 
of maternally deposited mRNAs 
dependent on zygotically produced 
factors.

Zygotic genome activation
(ZGA). The process during 
embryogenesis where the zygotic 
genome becomes transcriptionally 
active.
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